Learning to Branch

Prateek Gupta*, Elias B. Khalil, Didier Chételat, Maxime Gasse,
M. Pawan Kumar, Andrea Lodi, Yoshua Bengio

G-Research ML Seminar, Jan. 25th 2023

UNIVERSITY OF } POLYTECHNIQUE . P nq‘ o ——
xioi IR Unipegic 2

Th KR
RenTuing ~ [GJERAD %% oamacenes

Institute rour ortupes e o e :'A\l DECISION-MAKING

Slides

Slides: www.pgupta.info/talks

QR Codes generated via https://www.qr-code-generator. com/

www.pgupta.info/talks
https://www.qr-code-generator.com/

To improve the extent to which neural networks can imitate a
computationally expensive but accurate heuristic to solve
mixed-integer linear programming (MILP) problems.

Outline

Problem formulation

Hybrid Models for Learning to Branch
(NeurlPS 2020)

Lookback for Learning to Branch
(TMLR 2022)

Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch

Outline

Problem formulation
Discrete Optimization

Mixed-Integer Linear Program (MILP)

arg min c'x

X

» c e R" the objective coefficients

Mixed-Integer Linear Program (MILP)

arg min c'x

X

subject to Ax < b,

» c € R" the objective coefficients
» A e R™*" the constraint coefficient matrix
» b e R™ the constraint right-hand-sides

Mixed-Integer Linear Program (MILP)

argmin C X
X

subject to Ax < b,

» c € R" the objective coefficients
» A e R™*" the constraint coefficient matrix
» b e R™ the constraint right-hand-sides

» |, ue R" the lower and upper variable bounds

Mixed-Integer Linear Program (MILP)

arg min c'x

X

subject to Ax < b,
| <x<u,

x € ZP x R"P,

c € R" the objective coefficients
A € R™*" the constraint coefficient matrix
b € R™ the constraint right-hand-sides

l,u e R" the lower and upper variable bounds

vVvyYyyvyy

p < n integer variables

Mixed-Integer Linear Program (MILP)

arg min c'x

X

subject to Ax < b,
| <x<u,

x € ZP x R"P,

» c € R"” the objective coefficients

» A e R™*" the constraint coefficient matrix

» b e R™ the constraint right-hand-sides

» |, ue R" the lower and upper variable bounds
>

p < n integer variables

NP-hard problem.

Applications

Combinatorial Auctions
Facility location-Allocation

Maximum Indendent Set

Set Covering

and many more ...

S, S,
Q (0] Qo Q

8/79

Mixed-Integer Linear Program (MILP)

argmin c'x
X

subject to Ax < b,
| <x<u,

x € ZP x R"P|

» c € R" the objective coefficients

> A e R™*" the constraint coefficient matrix

» b e R™ the constraint right-hand-sides

» |, ue R" the lower and upper variable bounds
>

p < n integer variables

NP-hard problem.

Mixed-Integer Linear Program (MILP)

x2
x1

Image credit: Maxime Gasse

Linear Program (LP)

arg min c'x

X
subject to Ax < b,
| <x<u,

xer?]

> c e R” the objective coefficients
> A e R™*" the constraint coefficient matrix
» b e R™ the constraint right-hand-sides

» |, ue R" the lower and upper variable bounds

Linear Program (LP)

arg min c'x

X
subject to Ax < b,
| <x<u,

xer?]

> c e R” the objective coefficients
> A e R™*" the constraint coefficient matrix
» b e R™ the constraint right-hand-sides

» |, ue R" the lower and upper variable bounds

o Polynomially solvable

Linear Program (LP)

arg min c'x

X
subject to Ax < b,
| <x<u,

xer?]

> c e R” the objective coefficients
> A e R™*" the constraint coefficient matrix
» b e R™ the constraint right-hand-sides

» |, ue R" the lower and upper variable bounds

o Polynomially solvable

o Yields lower bounds to the original MILP

LP Relaxation of a MILP

Outline

Problem formulation

Branch-and-Bound

Branch-and-Bound (B&B)
B&B (Land et al., 1960) is the widely used framework to solve MILPs.
It consists of two steps

®
Q o)

S eed C @

o0 o000

Each node in branch-and-bound is a new MIP

Image source: https://www.gurobi.com/resource/mip-basics/

Branch-and-Bound (B&B)
B&B (Land et al., 1960) is the widely used framework to solve MILPs.
It consists of two steps

» Branching - Select variable to split the problem into two

®
Q o)

S eed C @

o0 o000

Each node in branch-and-bound is a new MIP

Image source: https://www.gurobi.com/resource/mip-basics/

Branch-and-Bound (B&B)
B&B (Land et al., 1960) is the widely used framework to solve MILPs.
It consists of two steps

» Branching - Select variable to split the problem into two

» Bounding - Solve the LP relaxation of resulting problem to obtain
optimization guarantees on the solution

®
Q o)

S eed C @

o0 o000

Each node in branch-and-bound is a new MIP

Image source: https://www.gurobi.com/resource/mip-basics/

LP Relaxation of a MILP

Branch-and-Bound
X

TN

Branch-and-Bound

A
/J\

Branch-and-Bound

X/X\X

Lol

Branch-and-Bound

X\.
7 TTX <
/X\XAX

X

Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e.
Ji<plxdL
x < |x'] Vx> [x].

1 1

Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e.
Ji<plxdL
x < |x'] Vx> [x].

1 1

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e.
Ji<p|xdZ
x < |x'] Vx> [x].

1 1

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.
Stopping criterion:

» L = U (optimality certificate)

» L = oo (infeasibility certificate)

> | - U < threshold (early stopping)

Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e.
Ji<p|xdZ
x < |x'] Vx> [x].

1 1

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.
Stopping criterion:

» L = U (optimality certificate)

» L = oo (infeasibility certificate)

> | - U < threshold (early stopping)

Note: A time limit is used to ensure termination.

Branch-and-bound: a sequential process

Sequential decisions:

» variable selection
(branching) v

» node selection

o
. . c
» cutting plane selection 3
o
» primal heuristic selection L
» simplex initialization solved

> . time

Branch-and-bound: a sequential process

Sequential decisions:

» variable selection
(branching) 1 u
» node selection

bound

» cutting plane selection

» primal heuristic selection

» simplex initialization

> . time

Outline

Problem formulation

The Branching Problem

Branching Policy

It is also called as variable selection policy.

Policy Objective: Given a B&B node i.e. MILP, select a variable
i < p | x*¢Z so that the final size of the tree is minimum (a proxy
for running time).

A gold standard: Strong Branching (impractical)

Strong branching!: one-step forward looking (greedy)

» solve both LPs for each candidate variable

> select the variable resulting in tightest relaxation
+ small trees

— computationally expensive

'D. Applegate et al. (1995). Finding cuts in the TSP. Tech. rep. DIMACS;
J. Linderoth et al. (May 1999). A Computational Study of Search Strategies
for Mixed Integer Programming.

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n
» Let L be the value of LP relaxation of the MILP

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n
» Let L be the value of LP relaxation of the MILP

» Denote Lfr as the value of LP relaxation of the MILP after

adding x; > [x*] constraint

1

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n
» Let L be the value of LP relaxation of the MILP
» Denote Lfr as the value of LP relaxation of the MILP after

*

adding x; > [x’

1

» Similarly, denote L; for the other half

| constraint

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n
» Let L be the value of LP relaxation of the MILP
» Denote Lfr as the value of LP relaxation of the MILP after

*

adding x; > [x’

1

» Similarly, denote L; for the other half

| constraint

Strong branching score

scoresg,i = max(L — L, €) x max(L — L} ,¢)

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n
» Let L be the value of LP relaxation of the MILP
» Denote Lfr as the value of LP relaxation of the MILP after

*

adding x; > [x’

1

» Similarly, denote L; for the other half

| constraint

Strong branching score

scoresg,i = max(L — L, €) x max(L — L} ,¢)

Strong branching decision

isp = argmax scoresg ;
i

Outline

Problem formulation

Learning to branch

Learning to branch

Objective:

Given a distribution of problem
sets, find a branching policy that
yields a shortest tree on an average.
Exploits statistical

correlation across problem sets.

Figure: Application specific distribution

Learning to branch
Objective: Given a dataset of MILPs
» learn an inexpensive function f
» that imitates strong branching decisions (computationally
expensive)

Learning to branch
Objective: Given a dataset of MILPs
» learn an inexpensive function f
» that imitates strong branching decisions (computationally
expensive)

isp = arg maxscoresg ; if = arg maxscoreg, ;,
ieC ieC

where s,’ég is the score for i < p variable as estimated by f5.

Learning to branch
Objective: Given a dataset of MILPs
» learn an inexpensive function f
» that imitates strong branching decisions (computationally
expensive)

isp = arg maxscoresg ; if = arg maxscoreg, ;,
ieC ieC
where s,’ég is the score for i < p variable as estimated by f5.

0% = argmin L(fp(MILP), i5g)
0

Learning to branch
Objective: Given a dataset of MILPs
» learn an inexpensive function f
» that imitates strong branching decisions (computationally
expensive)

isp = arg maxscoresg ; if = arg maxscoreg, ;,
ieC ieC

where s,’ég is the score for i < p variable as estimated by f5.
0% = argmin L(fp(MILP), i5g)
0

Well studied problem (not an exhaustive list)
> Gasse et al., 2019 = offline imitation learning using GCNN
» Nair et al.,, 2020 = uses GCNNs to design other heuristics
» Chen et al., 2022 — studies the limitations of existing

GNNs to represent MILPs

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the
strong branching policy through classification framework

+ superior representation power

+ best overall accuracy

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the
strong branching policy through classification framework

+ superior representation power

+ best overall accuracy

Model inputs
Inputs to the GNN is a bipartite-representation of MILP: G

GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

arg min cx

X

subject to Ax < b,
| <x<u,

xe ZP x R"P,

GNNs: Bipartite Representation

of MILPs

Natural representation : variable / constraint bipartite graph

arg min cx

X

subject to Ax < b,
| <x<u,

xe ZP x R"P,

» v;: variable features (type, coef

)
(2)

., bounds, LP solution. . .)

GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

arg min cx

X

subject to Ax < b, @
| <x<u,

x € ZP x R"™P. @

» v;: variable features (type, coef., bounds, LP solution...)

> g;: constraint features (right-hand-side, LP slack...)

GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

arg min cx

X

subject to Ax < b,
| <x<u,

xe ZP x R"P,

€0,0
e1,0
€20
€21

ANV
by

» v;: variable features (type, coef., bounds, LP solution...)
> g;: constraint features (right-hand-side, LP slack...)

» e;j: non-zero coefficients in A

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the
strong branching policy through classification framework

+ superior representation power

+ best overall accuracy

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the
strong branching policy through classification framework
+ superior representation power

+ best overall accuracy

— requires GPUs for best running times (Gupta, Gasse, et al.,
2020)

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the
strong branching policy through classification framework

+ superior representation power
+ best overall accuracy

— requires GPUs for best running times (Gupta, Gasse, et al.,
2020)

? Can we further improve the performance? (Gupta, Khalil,
et al., 2022)

Hybrid Models for Learning to Branch
(NeurlPS 2020)

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Outline

Hybrid Models for Learning to Branch
(NeurlPS 2020)

Hybrid Models for Learning to Branch,(NeurlPS 2020)

MILP Solvers

GUROBI

OPTIMIZATION

o |m]

MILP solvers do not use GPUs.
Use of GNNs can get infeasible in the following scenarios

» No GPUs: It will be infeasible to incorporate GNNs as a
branching policy in any of the available solvers

» Parallel MILP solving: As a single GPU can only fit a limited
number of GNNs, when several 100s of MILPs need to be
solved in parallel, GNNs can get infeasible

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Runtime performance

100 RPB-CPU
- —— GNN-CPU
~ —— Hybrid-CPU (Ours)
@ 80| — GNN-GPU
E
[
0 60
2
® 40
S
€ 2
o

0

50 100 150 200 250

Number of branching decisions

Figure: Cumulative time cost of different branching policies: (i) the default internal rule RPB of the
SCIP solver; (ii) a GNN model (using a GPU or a CPU); and (iii) our hybrid model. Clearly the GNN
model requires a GPU for being competitive, while our hybrid model does not. (Measured on a
capacitated facility location problem, medium size).

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Data Extraction

X G

Figure: Data extraction strategies: bipartite graph representation G at every node (expensive); candidate
variable features X at every node (cheap); bipartite graph at the root node and variable features at tree

node (hybrid).

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Outline

Hybrid Models for Learning to Branch
(NeurlPS 2020)
Model Architecture

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Model Architecture

38/79

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Model Architecture: CONCAT

CONCAT

e X n

5w b«
(OGN >C/
X S

Perez et al., 2018 first proposed FiLM for visual question answering task

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Model Architecture: FiLM

FiLM
1

¥ —1,B

Perez et al., 2018 first proposed FiLM for visual question answering task

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Model Architecture: HyperSVM

Perez et al., 2018 first proposed FiLM for visual question answering task

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Model Architecture

\S
& &
(9

Expressivity INEEE—

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Model Architecture

N3
Q® &\
Q2 o &
N Q° 2 S S
Expressivity IS
Computations I

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Model

Architecture: Performance

End-to-end training

Top-1 Accuracy
ey
o

w
o

N
N

N
N

N
o

w
3]

mmE GNN =5 COMP mmm MLP = CONCAT mmm FiLM © HyperSVM mmm HyperSVM-FiLM

cauctions facilities indset setcover

Figure: Test accuracy of the different models, with a simple e2e training protocol.

43/79

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Outline

Hybrid Models for Learning to Branch
(NeurlPS 2020)

Training Protocols

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Training Protocols

To enhance the generalization power of the learned models on the
bigger instances

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Training Protocols: Loss weights

A good decision closer to the root node is more important than the
ones far away from it.

Table: Effect of different sample weighting schemes on combinatorial auctions (big) instances, with a
simple MLP model. z € [0, 1] is the ratio of the depth of the node and the maximum depth observed in
a tree.

Type Weighting scheme Nodes Wins
Constant 1 9678 10/60
Exponential decay —e~052 9793 10/60

Linear (e7%5 —1)xz+1 9789 12/60
Quadratic decay (75 —1)x22+1 9561 14/60
Sigmoidal (L+e95)/(1+e795) 9534 14/60

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Training Protocols: Knowledge Distillation

Knowledge distillation (KD):2 Use the output of an expert GNN
from Gasse et al., 2019 as a target for the model.

KD reweights the samples so that the student doesn't attempt to
sharply classify samples that even the teacher didn't succeed with
(i.e. the logits have higher entropy for the more difficult

samples) Phuong et al., 2019.

Table: Test accuracy of FiLM, using different training protocols.

cauctions facilities indset setcover
Pretrained GNN 44.12 + 0.09 65.78 + 0.06 53.16 + 0.51 50.00 + 0.09
e2e 4431 £ 0.08 66.33 £0.33 53.23 £0.58 50.16 + 0.05
e2e & KD 4410 £ 0.09 66.60 £ 0.21 53.08 £ 0.3 50.31 £ 0.19

2G. Hinton et al. (2015). Distilling the knowledge in a neural network.

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Training Protocols: Auxiliary Task

Auxiliary Task (AT): No additional data required. We force the
variable representations to be far apart from each other.

» ED : Maximum distance between these representations in
euclidean space

» MHE3 : Uniform distribution of these representations over a
unit hypersphere

Table: Test accuracy of FiLM, using different training protocols.

cauctions facilities indset setcover
Pretrained GNN 44.12 £ 0.09 65.78 + 0.06 53.16 £+ 0.51 50.00 £ 0.09
e2e 44.31 + 0.08 66.33 + 0.33 53.23 + 0.58 50.16 + 0.05
e2e & KD 44.10 £+ 0.09 66.60 + 0.21 53.08 £ 0.3 50.31 £+ 0.19

0.
e2e & KD & AT 44.56 + 0.13 66.85 + 0.28 53.68 + 0.23 50.37 £+ 0.03

3W. Liu et al. (2018). Learning towards minimum hyperspherical energy.

Hybrid Models for Learning to Branch,(NeurlPS 2020)
B&B Performance (Runtime)

Finally, the learned models are used as a branching policy in SCIP
solver?.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

Easy Medium Hard

Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 425 1/ 60 13 3133 0/ 59 75 9972 0/ 51 50
PB 31.4 4/ 60 139 177.7 4/ 60 384 7126 3/ 56 309
RPB 369 1/ 60 23 2140 1/ 60 152 7948 2/ 54 99
COMP 304 3/ 60 120 1725 4/ 60 347 6334 6/ 57 294
GNN 392 0/ 60 112 209.8 0/ 60 314 7488 0/ 54 286
FiLM (ours) 24.7 51/ 60 109 136.4 51/ 60 325 531.7 46/ 57 295
GNN 289 - / 60 112 150.1 — / 60 314 6281 — / 56 286

Capacitated Facility Location

*A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

Hybrid Models for Learning to Branch,(NeurlPS 2020)
B&B Performance (Runtime)

Finally, the learned models are used as a branching policy in SCIP
solver?.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

Easy Medium Hard
Model Time Wins Nodes| Time Wins Nodes Time Wins Nodes
FSB 425 1/ 60 13 |3133 0/ 59 75 9972 0/ 51 50
PB 314 4/ 60 139 177.7 4/ 60 384 7126 3/ 56 309
RPB 369 1/ 60 23 |214.0 1/ 60 152 7948 2/ 54 99
COMP 304 3/ 60 120 |1725 4/ 60 347 6334 6/ 57 294
GNN 392 0/ 60 112 {2098 0/ 60 314 7488 0/ 54 286
FiLM (ours)| 24.7 51/ 60 109 |136.4 51/ 60 325 531.7 46/ 57 295
GNN 289 - / 60 112 |150.1 - / 60 314 6281 - / 56 286

Capacitated Facility Location

*A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

Hybrid Models for Learning to Branch,(NeurlPS 2020)
B&B Performance (Runtime)

Finally, the learned models are used as a branching policy in SCIP
solver?.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 125 1/ 60 13 3133 0/ 5 75 9972 0/ 51 50
PB 314 4/ 60 139 177.7 4/ 60 384 7126 3/ 56 309
RPB 369 1/ 60 23 2140 1/ 60 152 7948 2/ 54 99
COMP 304 3/ 60 120 1725 4/ 60 347 6334 6/ 57 294
GNN 39.2 0/ 60 112 209.8 0/ 60 314 7488 0/ 54 286
FiLM (ours) 4.7 51/ 60 109 136.4 51/ 60 325 531.7 46/ 57 295
GNN P89 - / 60 112 150.1 - / 60 314 6281 - / 56 286

Capacitated Facility Location

*A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

Hybrid Models for Learning to Branch,(NeurlPS 2020)
B&B Performance (Runtime)

Finally, the learned models are used as a branching policy in SCIP
solver?.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 425 1/ 60 13 3133 0/ 59 75 9972 0/ 51 50
PB 314 4/ 60 139 177.7 4/ 60 384 7126 3/ 56 309
RPB 369 1/ 60 23 214.0 1/ 60 152 7948 2/ 54 99
COMP 304 3/ 60 120 1725 4/ 60 347 6334 6/ 57 294
GNN 39.2 0/ 60 112 209.8 0/ 60 314 7488 0/ 54 286
FiLM (ours) P4.7 51/ 60 109 136.4 51/ 60 325 531.7 46/ 57 295
GNN 289 - / 60 112 150.1 — / 60 314 6281 - / 56 286

Capacitated Facility Location

*A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

Hybrid Models for Learning to Branch,(NeurlPS 2020)
B&B Performance (Runtime)

Finally, the learned models are used as a branching policy in SCIP
solver?.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

Easy Medium Hard

Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 425 1/ 60 13 3133 0/ 59 75 9972 0/ 51 50

PB 314 4/ 60 139 177.7 4/ 60 384 7126 3/ 56 309

RPB 369 1/ 60 23 214.0 1/ 60 152 7948 2/ 54 99
COMP 304 3/ 60 120 1725 4/ 60 347 6334 6/ 57 294
GNN 39.2 0/ 60 112 209.8 0/ 60 314 7488 0/ 54 286
FiLM (ours) 24.7 51/ 60 109 136.4 51/ 60 325 531.7 46/ 57 295

I GNN P89 - /60 112 1501 - / 60 314 6281 — / 56 286

Capacitated Facility Location

*A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

Hybrid Models for Learning to Branch,(NeurlPS 2020)
B&B Performance (Runtime)

Finally, the learned models are used as a branching policy in SCIP
solver?.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 425 1/ 60 13 3133 0/ 59 75 9972 0/ 51 50
PB 314 4/ 60 139 1777 4/ 60 384 7126 3/ 56 309
RPB 369 1/ 60 23 2140 1/ 60 152 7948 2/ 54 99

OMP___30.4 3/ 60 120 1725 4/ 60 347 6334 6/ 57 204
92 0/ 60 112 2098 0/ 60 314 7488 0/ 54 286
FiLM (ours) 24.7 51/ 60 109 1364 51/ 60 325 531.7 46/ 57 295

GNN 289 - / 60 112 1501 — / 60 314 6281 - / 56 286

Capacitated Facility Location

*A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

Hybrid Models for Learning to Branch,(NeurlPS 2020)
B&B Performance (Runtime)

Finally, the learned models are used as a branching policy in SCIP
solver?.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 425 1/ 60 13 3133 0/ 59 75 9972 0/ 51 50
PB 314 4/ 60 139 177.7 4/ 60 384 7126 3/ 56 309
RPB 369 1/ 60 23 214.0 1/ 60 152 7948 2/ 54 99
COMP 304 3/ 60 120 1725 4/ 60 347 6334 6/ 57 294
GNN 39.2 0/ 60 112 209.8 0/ 60 314 7488 0/ 54 286
FiLM (ours) 24.7 51/ 60 109 136.4 51/ 60 325 531.7 46/ 57 295
GNN 289 - / 60 112 150.1 - / 60 314 6281 — / 56 286

Capacitated Facility Location

*A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

Hybrid Models for Learning to Branch,(NeurlPS 2020)
B&B Performance (Runtime)

Finally, the learned models are used as a branching policy in SCIP
solver?.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

Easy Medium Hard

Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 425 1/ 60 13 3133 0/ 59 75 997.2 0/ 51 50
PB 314 4/ 60 139 177.7 4/ 60 384 7126 3/ 56 309
RPB 369 1/ 60 23 214.0 1/ 60 152 7948 2/ 54 99
COMP 304 3/ 60 120 1725 4/ 60 347 6334 6/ 57 294
GNN 39.2 0/ 60 112 209.8 0/ 60 314 7488 0/ 54 286
FiLM (ours) R4.7 51/ 60 109 136.4 51/ 60 325 531.7 46/ 57 295
GNN 289 - / 60 112 150.1 - / 60 314 628.1 — / 56 286

Capacitated Facility Location

*A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

Hybrid Models for Learning to Branch,(NeurlPS 2020)
B&B Performance (Runtime)

Finally, the learned models are used as a branching policy in SCIP
solver?.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 42,5 / 60 13 3133 0/ 59 75 9972 0/ 51 50
PB 314 4/ 60 139 177.7 4/ 60 384 7126 3/ 56 309
RPB 369 1/60 23 2140 1/ 60 152 7948 2/ 54 99
COMP 304 3/ 60 120 1725 4/ 60 347 6334 6/ 57 294
GNN 39.2 / 60 112 2098 0/ 60 314 7488 0/ 54 286
FiLM (ourd) 24.7 51/ 60 109 136.4 51/ 60 325 531.7 46/ 57 295
GNN 289 —-|/ 60 112 150.1 - / 60 314 628.1 — / 56 286

Capacitated Facility Location

*A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

Hybrid Models for Learning to Branch,(NeurlPS 2020)
B&B Performance (Runtime)

Finally, the learned models are used as a branching policy in SCIP
solver?.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

Easy Medium Hard
Model Timg Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 425 1/ 60 | 13 3133 0/ 59 75 997.2 0/ 51 50
PB 314 4/ 60 |139 177.7 4/ 60 384 7126 3/ 56 309
RPB 369 1/ 60 | 23 214.0 1/ 60 152 7948 2/ 54 99
COMP 30.4 3/ 60 |120 1725 4/ 60 347 6334 6/ 57 294
GNN 3920 0/ 60 112 2098 0/ 60 314 7488 0/ 54 286
FiLM (ours) 24.7| 51/ 60 |109 136.4 51/ 60 325 531.7 46/ 57 295
GNN 289 - / 60 |112 150.1 — / 60 314 628.1 - / 56 286

Capacitated Facility Location

*A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

Hybrid Models for Learning to Branch,(NeurlPS 2020)
B&B Performance (Runtime)

Finally, the learned models are used as a branching policy in SCIP
solver?.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

Easy, Medium Hard
Model Time Wins] Nodes Time Wins Nodes Time Wins Nodes
FSB 425 1/ 60 13 13.3 0/ 5 75 9972 0/ 51 50
PB 314 4/ 60 139 77.7 4/ 60 384 7126 3/ 56 309
RPB 369 1/ 60 14.0 1/ 60 152 7948 2/ 54 99
COMP 304 3/ 60 120 72.5 4/ 60 347 6334 6/ 57 294
60
60
60

N
w
Db DY e ()

GNN 392 0/ 112 09.8 0/ 60 314 7488 0/ 54 286
FiLM (ours) 24.7 51/ 109 136.4 51/ 60 325 531.7 46/ 57 295
GNN 289 - / 112 1501 - / 60 314 6281 - / 56 286

Capacitated Facility Location

*A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

Hybrid Models for Learning to Branch,(NeurlPS 2020)

B&B Performance (Runtime)

Finally, the learned models are used as a branching policy in SCIP
solver®.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes

FSB 425 1/ 60 13 3133 0/ 59 75 9972 0/ 51 50
PB 314 4/ 60 139 177.7 4/ 60 384 7126 3/ 56 309
RPB 369 1/ 60 23 2140 1/ 60 152 7948 2/ 54 99
COMP 304 3/ 60 120 1725 4/ 60 347 6334 6/ 57 204
GNN 392 0/ 60 112 2098 0/ 60 314 7488 0/ 54 286
FiLM (ours) 24.7 51/ 60 109 136.4 51/ 60 325 531.7 46/ 57 295
GNN 289 -/ 60 112 1501 - / 60 314 6281 — / 56 286

Capacitated Facility Location

®A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

Hybrid Models for Learning to Branch,(NeurlPS 2020)

B&B Performance (Runtime)

Small Medium Big
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 4253 1760 13 31333 0 /59 75 997.23 0/51 50

PB 31.35 4760 139 177.69 4760 384 71245 31/56 309
RPB 1760 23 213.99 1760 152 794.80 2/54 99
COMP 3 3 /60 120 172.51 4 /60 347 633.42 6 /57 294
GNN 39.18 0 /60 12 209.84 0 /60 314 748.85 0 /54 286
FILM (ours) 24.67 51 /60 109 136.42 51 /60 325 531.70 46 / 57 295
GNN-GPU 2891 - /60 112 15011 - /60 314 628.12 - /56 286

Capacitated Facility Location

FSB 27.16 0 /60 17 582.18 0745 116 2700.00 0/ 0 n/a

PB 10.19 0 /60 286 94.12 0 /60 2451 2208.57 07/23 82624
RPB 14.05 0 /60 54 94.65 0 /60 1129 1887.70 7727 48395
COMP 9.83 3/60 178 89.24 0 /60 1474 2166.44 0/21 52326
GNN 17.61 0 /60 136 242.15 0 /60 1013 2700.17 0/ 0 n/a
FILM (ours) 873 57 /60 147 63.75 60 / 60 1131 184324 20 /26 37777
GNN-GPU 826 - /60 136 5356 - /60 1013 153580 - /36 31662

Set Covering

FSB 612 0 /60 6 132.38 0 /60 71 212735 0/28 318

PB 276 1760 234 25.83 0 /60 2765 393.60 0/59 13719
RPB 4.01 0 /60 11 26.36 0 /60 714 210.95 29 /60 4701
COMP 276 0 /60 82 29.76 0 /60 930 494.59 0 /54 5613
GNN 273 1760 71 2226 0 /60 688 257.99 6 /60 3755
FILM (ours) 2.13 58 /60 73 1571 60 / 60 686 217.02 25 /60 4315
GNN-GPU 196 - /60 71 11.70 - /60 688 121.18 - /60 3755

Combinatorial Auctions

FSB 673.43 07/53 47 1689.75 0720 10 2700.00 0/ 0 n/a

PB 172.03 2/57 5728 753.95 0745 1570 2685.23 0/ 1 38215
RPB 59.87 5 /60 603 173.17 11 /60 205 1946.51 9 /21 2461
comp 8222 1758 847 383.97 1/52 267 2393.75 0/ 6 5589
GNN* 44.07 15 /60 331 625.23 1/50 599 233095 0/10 687
FiLM* (ours) 52.96 37 /55 376 13145 47 /54 264 182329 12 /15 1201
GNN-GPU™ 3171 - /60 331 63.96 - /60 599 1158.59 - /27 685

Maximum Independent Set

Hybrid Models for Learning to Branch,(NeurlPS 2020)

B&B Performance (Optimality Gap)

Hybrid models also have the least optimality gap at the end of the time
limit as compared to other baselines as evaluated on CPU only machines.

Table: Mean optimality gap (lower the better) of commonly unsolved “big" instances (number of such
instances in brackets).

setcover (33)

indset (39)

FSB

0.1709

0.0755

PB
RPB
COMP
GNN
FiLM

0.0713
0.0628
0.0740
0.1039
0.0597

0.0298
0.0252
0.0252
0.0341
0.0187

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Runtime performance

100 RPB-CPU
- —— GNN-CPU
~ —— Hybrid-CPU (Ours)
@ 80| — GNN-GPU
E
[
0 60
2
® 40
S
€ 2
o

0

50 100 150 200 250

Number of branching decisions

Figure: Cumulative time cost of different branching policies: (i) the default internal rule RPB of the
SCIP solver; (ii) a GNN model (using a GPU or a CPU); and (iii) our hybrid model. Clearly the GNN
model requires a GPU for being competitive, while our hybrid model does not. (Measured on a
capacitated facility location problem, medium size).

Hybrid Models for Learning to Branch,(NeurlPS 2020)

Open questions

vvyyvyy

scaling to the real-world problems
reinforcement learning: still a lot of challenges
interpretation: which variables are chosen? Why ?
learning in collaboration with other heuristics, e.g, cut

selection, node selection, etc.
» meta-learning to transfer to unseen instances

Paper: https:
//arxiv.org/abs/2006.15212

Sl

b e]

[=] o=

Code: https://github.com/
pg2455/Hybrid- learn2branch

Peer-reviews:
http://bit.ly/3XU9ESW

QR Codes generated via https://www.qr-code-generator. com/

https://arxiv.org/abs/2006.15212
https://arxiv.org/abs/2006.15212
https://github.com/pg2455/Hybrid-learn2branch
https://github.com/pg2455/Hybrid-learn2branch
http://bit.ly/3XU9E8W
https://www.qr-code-generator.com/

Lookback for Learning to Branch
(TMLR 2022)

Lookback for Learning to Branch,(TMLR 2022)

Outline

Lookback for Learning to Branch
(TMLR 2022)

Lookback condition

Loss target

Regularizer

Evaluation

Conclusion

Lookback for Learning to Branch,(TMLR 2022)

Outline

Lookback for Learning to Branch
(TMLR 2022)
Lookback condition

Lookback for Learning to Branch,(TMLR 2022)

Lookback condition in strong branching

Strong branching heuristic exhibits the following condition:
Parent’s second best choice is often the child’s best choice.

Lookback for Learning to Branch,(TMLR 2022)

Frequency of Lookback condition

Frequency of lookback condition under strong branching heuristic
30 20 50

20

9 Ground truth

60

10

cauctions 29.6
setcover 38.3

facilities

indset

= GNN

55.9

59/79

Lookback for Learning to Branch,(TMLR 2022)

Frequency of Lookback condition

Instances | Description number of number of Frequency of
parent-child | parent-child | the lookback
pairs pairs property
collected exhibiting
the lookback
property
CORLAT | Corridor planning in 5082 1765 34.73%
wildlife management
RCW Red-cockaded woodpecker 5115 1952 38.16%

diffusion conservation

Frequency of the lookback property in the real-world instances is as prevalent as in the synthetic
instances considered in the main paper. These instances are made available by Dilkina et al., 2017.

Lookback for Learning to Branch,(TMLR 2022)

Outline

Lookback for Learning to Branch
(TMLR 2022)

Loss target

Lookback for Learning to Branch,(TMLR 2022)

Loss targets

We consider two types of targets
(Z is the set of all the second best branching variables)

Original one-hot encoded target,
y

1 =i
yi=14' 8
0, otherwise

Lookback for Learning to Branch,(TMLR 2022)

Loss targets

We consider two types of targets
(Z is the set of all the second best branching variables)

Original one-hot encoded target,
y

1 =i
yi=14' 8
0, otherwise

0% = arg min

E(f(Gk),yk)

\Mz

Lookback for Learning to Branch,(TMLR 2022)

Loss targets

We consider two types of targets
(Z is the set of all the second best branching variables)

Original one-hot encoded target, Second-best e-smoothed target,
Yy 4
L, L =i l—e, i=ilp
’ 0, otherwise zj = ﬁ, icZ
0, otherwise

N
o1
o) = argemm N Z CE(fy(G«),yk)
k=1

Lookback for Learning to Branch,(TMLR 2022)

Loss targets

We consider two types of targets
(Z is the set of all the second best branching variables)

Original one-hot encoded target, Second-best e-smoothed target,
Yy 4
L, L =i l—e, i=ilp
’ 0, otherwise zj = ﬁ, icZ
0, otherwise

N
1 N
* _ o 1
gy = argemm N ; CE(fy(G«),yk) 0; = argemin N E CE(f9(Gk),zk)
o k=1

Lookback for Learning to Branch,(TMLR 2022)

Outline

Lookback for Learning to Branch
(TMLR 2022)

Regularizer

Lookback for Learning to Branch,(TMLR 2022)

Parent-As-Target (PAT) regularizer

We consider a regularizer to encourage the lookback proprety in
GNNs

Lookback for Learning to Branch,(TMLR 2022)

Parent-As-Target (PAT) regularizer

We consider a regularizer to encourage the lookback proprety in
GNNs

losspar = 1{Lookback}-

Lookback for Learning to Branch,(TMLR 2022)

Parent-As-Target (PAT) regularizer

We consider a regularizer to encourage the lookback proprety in
GNNs

losspat = 1{Lookback;} - CE(fy(Gi),?7),

Lookback for Learning to Branch,(TMLR 2022)

Parent-As-Target (PAT) regularizer

We consider a regularizer to encourage the lookback proprety in
GNNs

losspaT = 1{Lookback;} - CE(fy(Gi), fo(GF*"*"")[Ci]),

Lookback for Learning to Branch,(TMLR 2022)

Outline

Lookback for Learning to Branch
(TMLR 2022)

Evaluation

Lookback for Learning to Branch,(TMLR 2022)

Performance evaluation

We will consider three different set of parameters

» Choice of the target:

» One-hot encoded, y
» Second-best e-smoothed, z

» Strength of the PAT regularizer, Apat € {0,0.01,0.1,0.2,0.3}
» Strength of the /2-regularizer, \;; € {0.0,0.01,0.1,1.0}

Lookback for Learning to Branch,(TMLR 2022)

Performance evaluation

N
1
6, = argmin i E CE(fy(Gk),yk) + A2 - 10]]2
0,212 k=1

Lookback for Learning to Branch,(TMLR 2022)

Performance evaluation

6, = arg/\mln — Z CE(fo(Gk), yk) + A2 - [10]]2
2 k=1

N

0, = arg mm—ZCE (f9(Gk)szk) + A2 - 102
022 o

Lookback for Learning to Branch,(TMLR 2022)

Performance evaluation

0, = arg min — Z CE(fy(Gk), yi) + A2 - |[0]]2

0, A2 k 1
N

0, —argmln—ZCE (f9(Gk)szk) + A2 - 102
0,212 k=1

N

. 1
OpaT = argmin N Z CE(fp(Gk),Vv) + A2 - [|0]]2 + ApaT - losspaT
O v, A2, par Y T

Lookback for Learning to Branch,(TMLR 2022)

Performance evaluation: Instances

» Small instances are used to collect training data of
parent-child nodes by solving these instances using the strong
branching heuristic as the variable selection policy in the solver

Lookback for Learning to Branch,(TMLR 2022)

Performance evaluation: Instances

» Small instances are used to collect training data of
parent-child nodes by solving these instances using the strong
branching heuristic as the variable selection policy in the solver

» Medium instances are used for hyperparameter selection

incorporating harder-to-formulate criterion in the objective
function

Lookback for Learning to Branch,(TMLR 2022)

Performance evaluation: Instances

» Small instances are used to collect training data of
parent-child nodes by solving these instances using the strong
branching heuristic as the variable selection policy in the solver

» Medium instances are used for hyperparameter selection
incorporating harder-to-formulate criterion in the objective
function

> Big instances are used to report performance evaluation

Lookback for Learning to Branch,(TMLR 2022)

Model selection criterion: Validation accuracy

Maximum Validation Accuracy

6y 6; Opar) 6y 6; Opar 6y 6; Opar 6, 6; Opar
cauctions setcover facilities indset

Top-1 accuracy (1-standard deviation) on validation dataset.

69/79

Lookback for Learning to Branch,(TMLR 2022)

Model selection criterion: Out-of-distribution performance

We solve 100 medium instances and collect the following metrics
» Wins: Number of times a model solved the instance fastest

» Time: 1-shifted geometric mean of time taken to solve each
instance

» Nodes: 1-shifted geometric mean of nodes taken in the B&B
tree of the commonly solved instances

Lookback for Learning to Branch,(TMLR 2022)

Model selection criterion: Out-of-distribution performance

B

[Time (+¢;) J

Lookback for Learning to Branch,(TMLR 2022)

Model selection criterion: Out-of-distribution performance

1.0 L € L
O]
- . Parent as Target
(] 0.8 True
E False
F wos
8 [}
el
NS -
T 204
g Loss target
o 0.2 ® o
= = e
@
0.0 » » 0] » » » *
Time(1.2s) Nodes(68) | Time(0.3s) Nodes(42) | Time(6.3s) Nodes(18) | Time(5.3s) Nodes(392)
cauctions setcover facilities indset”

We plot the range-normalized (range is specified in parenthesis) Time and Node performance of the
selected models. The centered “X" black mark shows the final models that were selected to be used for
evaluating the performance on Big instances. The points with a red outline show the performance of the
models selected according to the best validation accuracy (Note that we omit such models for indset as
it distorts the scale of the plot.)

Lookback for Learning to Branch,(TMLR 2022)

Final performance

Model Time Time (c) Wins Solved Nodes (c)
FSB® n/a n/a n/a n/a n/a
RPB 626.81 434.92 1 80 17979
TUNEDRPB 644.20 450.06 0 80 18104
GNN 507.06 333.59 14 80 17 145
GNN-PAT (ours) 477.26 310.22 69 84 16 388

Combinatorial Auction (Bigger)

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

Lookback for Learning to Branch,(TMLR 2022)

Final performance

Model Time Time (c) Wins Solved Nodes (c)
| FSB* n/a n/a n/a n/a n/a |
RPB 626.81 434.92 1 80 17979
TUNEDRPB 644.20 450.06 0 80 18104
GNN 507.06 333.59 14 80 17145
GNN-PAT (ours) 477.26 310.22 69 84 16 388

Combinatorial Auction (Bigger)

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

Lookback for Learning to Branch,(TMLR 2022)

Final performance

Model Time Time (c) Wins Solved Nodes (c)
FSB® n/a n/a n/a n/a n/a
(RPB 626.81 434.92 1 80 17979)
TUNEDRPB 644.20 450.06 0 80 18104
GNN 507.06 333.59 14 80 17 145
GNN-PAT (ours) 477.26 310.22 69 84 16 388

Combinatorial Auction (Bigger)

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

Lookback for Learning to Branch,(TMLR 2022)

Final performance

Model Time Time (c) Wins Solved Nodes (c)
FSB® n/a n/a n/a n/a n/a
RPB 626.81 434.92 1 80 17979
(TUNEDRPB 644.20 450.06 0 80 18104)
GNN 507.06 333.59 14 80 17145
GNN-PAT (ours) 477.26 310.22 69 84 16 388

Combinatorial Auction (Bigger)

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

Lookback for Learning to Branch,(TMLR 2022)

Final performance

Model Time Time (c) Wins Solved Nodes (c)
FSB® n/a n/a n/a n/a n/a
RPB 626.81 434.92 1 80 17979
TUNEDRPB 644.20 450.06 0 80 18104
GNN 507.06 333.59 14 80 17 145)
GNN-PAT (ours) 477.26 310.22 69 84 16 388

Combinatorial Auction (Bigger)

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

Lookback for Learning to Branch,(TMLR 2022)

Final performance

Model Time Time (c) Wins Solved Nodes (c)
FSB® n/a n/a n/a n/a n/a
RPB 626.81 434.92 1 80 17979
TUNEDRPB 644.20 450.06 0 80 18104
GNN 507.06 333.59 14 80 17 145
[GNN-PAT (ours) 477.26 310.22 69 84 16 388 |

Combinatorial Auction (Bigger)

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

Lookback for Learning to Branch,(TMLR 2022)

Optimality gap on commonly unsolved instances

1.054

8.0

1.00

0.95

0.90

0.85

0.80

0.754

Optimality Gap (1-shifted Geometric Mean)
of commonly unsolved instances

le-2

L

Q2 L ¥
A AR

S
X
cauctions (16)

o R Y £
& &Y
2
<& & ~

le-2
3.2

5.50

5.25 3.0

5.00
2.8

4.75-
2.6

4.50

4.25

4.00
2.2

3.75

> 2 o3 S
A R

2 Q3 &

L < \a
& & o

S S

setcover (40) facilities (5) indset (30)

Figure: Mean optimality gap of the commonly unsolved instances

74/79

Lookback for Learning to Branch,(TMLR 2022)

Outline

Lookback for Learning to Branch
(TMLR 2022)

Conclusion

Lookback for Learning to Branch,(TMLR 2022)

Conclusion

» We discover lookback phenomenon in the gold-standard (by
tree size) variable-selection heuristic

Lookback for Learning to Branch,(TMLR 2022)

Conclusion

» We discover lookback phenomenon in the gold-standard (by
tree size) variable-selection heuristic

> We proposed second-best e-smoothed target and a PAT

regularizer term to incorporate lookback phenomenon in deep
learning models

Lookback for Learning to Branch,(TMLR 2022)

Conclusion

» We discover lookback phenomenon in the gold-standard (by
tree size) variable-selection heuristic

> We proposed second-best e-smoothed target and a PAT
regularizer term to incorporate lookback phenomenon in deep
learning models

> We proposed a model selection scheme to incorporate final
utility of these models in the objective function

Lookback for Learning to Branch,(TMLR 2022)

Conclusion

» We discover lookback phenomenon in the gold-standard (by
tree size) variable-selection heuristic

> We proposed second-best e-smoothed target and a PAT
regularizer term to incorporate lookback phenomenon in deep
learning models

> We proposed a model selection scheme to incorporate final
utility of these models in the objective function

» Our proposed models outperform the SOTA results

Lookback for Learning to Branch,(TMLR 2022)

Open questions

» Discovery of more inductive biases

QR Codes generated via https://www.qr-code-generator. com/

https://arxiv.org/abs/2006.15212
https://openreview.net/forum?id=EQpGkw5rvL
https://www.qr-code-generator.com/

Lookback for Learning to Branch,(TMLR 2022)

Open questions

» Discovery of more inductive biases
» Designing better ways to incorporate lookback property

0 Ground truth =

I GNN
7 335 PAT-GNN (Ours)

w
o

N
o
&
w

21.8 22.1 21.9 22.1

Frequency of lookback condition
on small instances (%)
w
o
N
I
S

cauctions setcover facilities indset

77/79

https://arxiv.org/abs/2006.15212
https://openreview.net/forum?id=EQpGkw5rvL
https://www.qr-code-generator.com/

Lookback for Learning to Branch,(TMLR 2022)

Open questions

» Discovery of more inductive biases

» Designing better ways to incorporate lookback property

» Improve reinforcement learning solutions using the lookback
property

QR Codes generated via https://www.qr-code-generator. com/

https://arxiv.org/abs/2006.15212
https://openreview.net/forum?id=EQpGkw5rvL
https://www.qr-code-generator.com/

Lookback for Learning to Branch,(TMLR 2022)

Open questions

» Discovery of more inductive biases
» Designing better ways to incorporate lookback property
» Improve reinforcement learning solutions using the lookback

property

Paper: https://arxiv.org/abs/2006.15212 Peer-reviews:
https://openreview.net/forum?id=EQpGkw5rvL

QR Codes generated via https://www.qr-code-generator. com/

https://arxiv.org/abs/2006.15212
https://openreview.net/forum?id=EQpGkw5rvL
https://www.qr-code-generator.com/

Learning to Branch

Thank you!

Prateek Gupta*, Elias B. Khalil, Didier Chételat, Maxime Gasse,
M. Pawan Kumar, Andrea Lodi, Yoshua Bengio

UNIVERSITY OF Ly

) POLVIECHNIGUE (jpiersits e
) de Montréal

Th K\
Rentuing ~ [GERAD % pamsscmnee

Institute EOSE N PECISIoN-MakiNG

N

Slides

Slides: www.pgupta.info/talks

QR Codes generated via https://www.qr-code-generator. com/

www.pgupta.info/talks
https://www.qr-code-generator.com/

	Problem formulation
	Discrete Optimization
	Branch-and-Bound
	The Branching Problem
	Learning to branch

	Hybrid Models for Learning to Branch (NeurIPS 2020)
	Model Architecture
	Training Protocols

	Lookback for Learning to Branch (TMLR 2022)
	Lookback condition
	Loss target
	Regularizer
	Evaluation
	Conclusion

	

