Learning to Branch

Prateek Gupta*, Elias B. Khalil, Didier Chételat, Maxime Gasse, M. Pawan Kumar, Andrea Lodi, Yoshua Bengio

G-Research ML Seminar, Jan. 25th 2023

Slides

Slides: www.pgupta.info/talks

To **improve** the extent to which neural networks can **imitate** a computationally expensive but accurate heuristic to solve mixed-integer linear programming (MILP) problems.

Problem formulation

Hybrid Models for Learning to Branch (NeurlPS 2020)

Problem formulation

Discrete Optimization Branch-and-Bound The Branching Problem Learning to branch

Hybrid Models for Learning to Branch (NeurlPS 2020)

Problem formulation

Discrete Optimization

Branch-and-Bound The Branching Problem Learning to branch

Hybrid Models for Learning to Branch (NeurlPS 2020)

$$\underset{x}{\text{arg\,min}} \quad c^{\top}x$$

ightharpoonup c $\in \mathbb{R}^n$ the objective coefficients

$$\label{eq:constraints} \begin{aligned} \underset{x}{\text{arg min}} & & c^\top x \\ \text{subject to} & & \text{Ax} \leq b, \end{aligned}$$

- ightharpoonup c $\in \mathbb{R}^n$ the objective coefficients
- ▶ $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- ▶ b ∈ \mathbb{R}^m the constraint right-hand-sides

$$\label{eq:continuous_subject} \begin{aligned} \underset{x}{\text{arg min}} & & c^\top x \\ \text{subject to} & & Ax \leq b, \\ & & I \leq x \leq u, \end{aligned}$$

- ightharpoonup c $\in \mathbb{R}^n$ the objective coefficients
- $ightharpoonup A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- ▶ b ∈ \mathbb{R}^m the constraint right-hand-sides
- ▶ $l, u \in \mathbb{R}^n$ the lower and upper variable bounds

```
\label{eq:continuous} \begin{aligned} &\underset{\mathsf{x}}{\mathsf{arg\,min}} & & \mathsf{c}^{\top}\mathsf{x} \\ &\mathsf{subject\ to} & & \mathsf{Ax} \leq \mathsf{b}, \\ & & \mathsf{I} \leq \mathsf{x} \leq \mathsf{u}, \\ & & & \mathsf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}. \end{aligned}
```

- ightharpoonup c $\in \mathbb{R}^n$ the objective coefficients
- $ightharpoonup A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- ▶ b ∈ \mathbb{R}^m the constraint right-hand-sides
- ▶ $l, u \in \mathbb{R}^n$ the lower and upper variable bounds
- $ightharpoonup p \le n$ integer variables

$$\label{eq:continuous} \begin{aligned} \underset{x}{\text{arg min}} & & c^\top x \\ \text{subject to} & & \mathsf{Ax} \leq \mathsf{b}, \\ & & \mathsf{I} \leq \mathsf{x} \leq \mathsf{u}, \\ & & & \mathsf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}. \end{aligned}$$

- ightharpoonup c $\in \mathbb{R}^n$ the objective coefficients
- ▶ $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- ▶ b ∈ \mathbb{R}^m the constraint right-hand-sides
- ▶ $l, u \in \mathbb{R}^n$ the lower and upper variable bounds
- $ightharpoonup p \le n$ integer variables

NP-hard problem.

Applications

Combinatorial Auctions

Facility location-Allocation

Maximum Indendent Set

Set Covering

and many more ...

0	0	• S ₃ •			
S ₁		S_2			
•	0		0		0
			S_4		S_5
•	0	S ₆	0		0

$$\begin{array}{ll} \underset{x}{\text{arg min}} & c^{\top}x \\ \text{subject to} & \mathsf{Ax} \leq \mathsf{b}, \\ & \mathsf{I} \leq \mathsf{x} \leq \mathsf{u}, \\ & & \mathsf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}. \end{array}$$

- ightharpoonup c $\in \mathbb{R}^n$ the objective coefficients
- ▶ $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- ▶ b ∈ \mathbb{R}^m the constraint right-hand-sides
- ▶ $l, u \in \mathbb{R}^n$ the lower and upper variable bounds
- $ightharpoonup p \leq n$ integer variables

NP-hard problem.

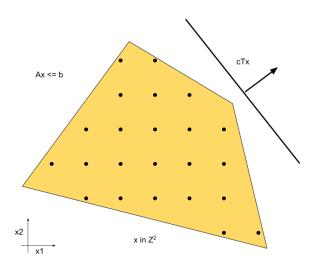


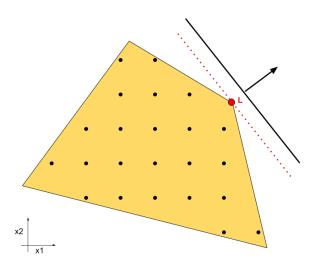
Image credit: Maxime Gasse

Linear Program (LP)

```
\label{eq:subject} \begin{array}{ll} \underset{x}{\text{arg min}} & c^\top x \\ \text{subject to} & Ax \leq b, \\ & I \leq x \leq u, \\ & x \in \mathbb{R}^n. \end{array}
```

- ightharpoonup c $\in \mathbb{R}^n$ the objective coefficients
- ▶ $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- ▶ b ∈ \mathbb{R}^m the constraint right-hand-sides
- ▶ $l, u \in \mathbb{R}^n$ the lower and upper variable bounds

Linear Program (LP)


```
\label{eq:subject} \begin{array}{ll} \underset{x}{\text{arg min}} & c^\top x \\ \text{subject to} & Ax \leq b, \\ & I \leq x \leq u, \\ & x \in \mathbb{R}^n. \end{array}
```

- ightharpoonup c $\in \mathbb{R}^n$ the objective coefficients
- ▶ $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- ▶ b ∈ \mathbb{R}^m the constraint right-hand-sides
- ▶ $l, u \in \mathbb{R}^n$ the lower and upper variable bounds
- Polynomially solvable

Linear Program (LP)

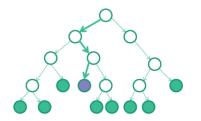
- ightharpoonup c $\in \mathbb{R}^n$ the objective coefficients
- ▶ $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- ▶ b ∈ \mathbb{R}^m the constraint right-hand-sides
- ▶ $l, u \in \mathbb{R}^n$ the lower and upper variable bounds
- Polynomially solvable
- Yields lower bounds to the original MILP

LP Relaxation of a MILP

Problem formulation

Discrete Optimization

Branch-and-Bound

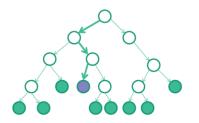

The Branching Problem Learning to branch

Hybrid Models for Learning to Branch (NeurlPS 2020)

Branch-and-Bound (B&B)

B&B (Land et al., 1960) is the widely used framework to solve MILPs.

It consists of two steps

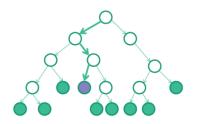


Each node in branch-and-bound is a new MIP

Branch-and-Bound (B&B)

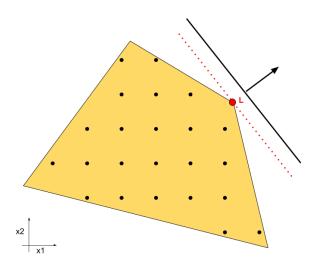
B&B (Land et al., 1960) is the widely used framework to solve MILPs. It consists of two steps

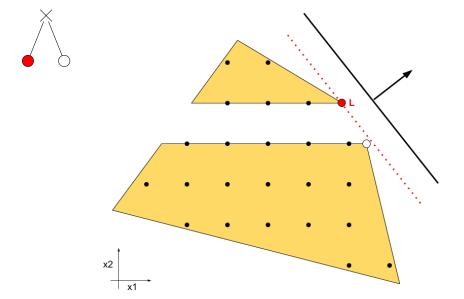
▶ Branching - Select variable to split the problem into two

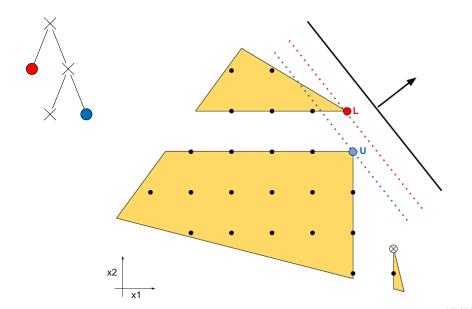

Each node in branch-and-bound is a new MIP

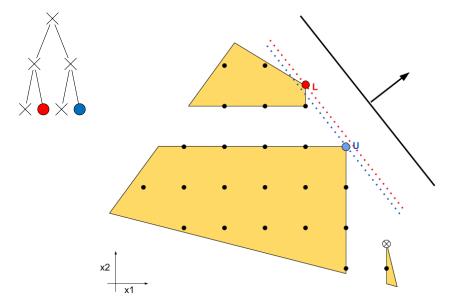
Branch-and-Bound (B&B)

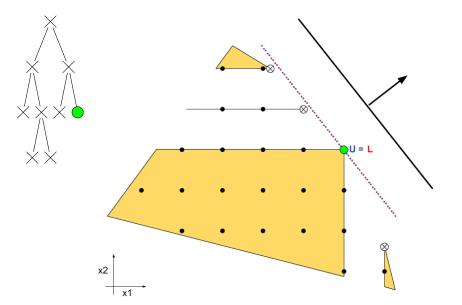
B&B (Land et al., 1960) is the widely used framework to solve MILPs.


It consists of two steps


- ▶ Branching Select variable to split the problem into two
- ▶ **Bounding** Solve the LP relaxation of resulting problem to obtain optimization guarantees on the solution




Each node in branch-and-bound is a new MIP


LP Relaxation of a MILP

Branch: Split the LP recursively over a non-integral variable, i.e.

$$\exists i \leq p \mid x_i^* \notin \mathbb{Z}$$

$$x_i \leq \lfloor x_i^{\star} \rfloor \quad \lor \quad x_i \geq \lceil x_i^{\star} \rceil.$$

Branch: Split the LP recursively over a non-integral variable, i.e.

$$\exists i \leq p \mid x_i^* \notin \mathbb{Z}$$

$$x_i \leq \lfloor x_i^{\star} \rfloor \quad \lor \quad x_i \geq \lceil x_i^{\star} \rceil.$$

Lower bound (L): minimal among leaf nodes.

Upper bound (U): minimal among leaf nodes with integral solution.

Branch: Split the LP recursively over a non-integral variable, i.e.

$$\exists i \leq p \mid x_i^* \notin \mathbb{Z}$$

$$x_i \leq \lfloor x_i^{\star} \rfloor \quad \lor \quad x_i \geq \lceil x_i^{\star} \rceil.$$

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

- ightharpoonup L = U (optimality certificate)
- ightharpoonup L = ∞ (infeasibility certificate)
- ► L U < threshold (early stopping)

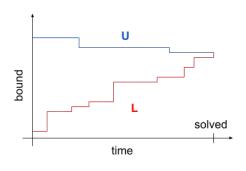
Branch: Split the LP recursively over a non-integral variable, i.e.

$$\exists i \leq p \mid x_i^* \notin \mathbb{Z}$$

$$x_i \leq \lfloor x_i^{\star} \rfloor \quad \lor \quad x_i \geq \lceil x_i^{\star} \rceil.$$

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

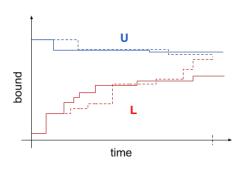
Stopping criterion:


- ► L = U (optimality certificate)
- ightharpoonup L = ∞ (infeasibility certificate)
- ► L U < threshold (early stopping)

Note: A time limit is used to ensure termination.

Branch-and-bound: a sequential process

Sequential decisions:


- variable selection (branching)
- node selection
- cutting plane selection
- primal heuristic selection
- simplex initialization
- **.**...

Branch-and-bound: a sequential process

Sequential decisions:

- variable selection (branching)
- node selection
- cutting plane selection
- primal heuristic selection
- ► simplex initialization

Problem formulation

Discrete Optimization
Branch-and-Bound

The Branching Problem

Learning to branch

Hybrid Models for Learning to Branch (NeurIPS 2020)

Branching Policy

It is also called as variable selection policy.

Policy Objective: Given a B&B node i.e. MILP, select a variable $i \leq p \mid x_i^* \notin \mathbb{Z}$ so that the final size of the tree is minimum (a proxy for running time).

A gold standard: Strong Branching (impractical)

Strong branching¹: one-step forward looking (greedy)

- solve both LPs for each candidate variable
- select the variable resulting in tightest relaxation
- + small trees
- computationally expensive

¹D. Applegate et al. (1995). Finding cuts in the TSP. Tech. rep. DIMACS; J. Linderoth et al. (May 1999). A Computational Study of Search Strategies for Mixed Integer Programming.

Strong branching score for a variable i at a node n

Strong branching score for a variable i at a node n

Let L be the value of LP relaxation of the MILP

Strong branching score for a variable i at a node n

- Let L be the value of LP relaxation of the MILP
- ▶ Denote L_i^+ as the value of LP relaxation of the MILP after adding $x_i \ge \lceil x_i^* \rceil$ constraint

Strong branching score for a variable i at a node n

- Let L be the value of LP relaxation of the MILP
- ▶ Denote L_i^+ as the value of LP relaxation of the MILP after adding $x_i \ge \lceil x_i^* \rceil$ constraint
- ▶ Similarly, denote L_i^- for the other half

Strong branching score for a variable i at a node n

- ▶ Let L be the value of LP relaxation of the MILP
- ▶ Denote L_i^+ as the value of LP relaxation of the MILP after adding $x_i \ge \lceil x_i^* \rceil$ constraint
- ▶ Similarly, denote L_i^- for the other half

Strong branching score

$$score_{SB,i} = max(L - L_i^+, \epsilon) \times max(L - L_i^-, \epsilon)$$

Strong branching score for a variable i at a node n

- ▶ Let L be the value of LP relaxation of the MILP
- ▶ Denote L_i^+ as the value of LP relaxation of the MILP after adding $x_i \ge \lceil x_i^* \rceil$ constraint
- \triangleright Similarly, denote L_i^- for the other half

Strong branching score

$$score_{SB,i} = max(L - L_i^+, \epsilon) \times max(L - L_i^-, \epsilon)$$

Strong branching decision

$$i_{SB}^{\star} = \underset{i}{\operatorname{arg max}} \operatorname{score}_{SB,i}$$

Outline

Problem formulation

Discrete Optimization Branch-and-Bound The Branching Problem Learning to branch

Hybrid Models for Learning to Branch (NeurlPS 2020)

Lookback for Learning to Branch (TMLR 2022)

Objective:

Given a distribution of problem sets, find a branching policy that yields a shortest tree on an average. Exploits statistical correlation across problem sets.

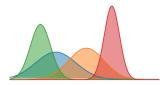


Figure: Application specific distribution

Objective: Given a dataset of MILPs

- learn an inexpensive function f
- that imitates strong branching decisions (computationally expensive)

Objective: Given a dataset of MILPs

- learn an inexpensive function f
- that imitates strong branching decisions (computationally expensive)

$$i_{SB}^{\star} = \mathop{\arg\max}_{i \in \mathcal{C}} \mathop{\mathrm{score}}_{SB,i} \qquad i_f^{\star} = \mathop{\arg\max}_{i \in \mathcal{C}} \mathop{\mathrm{score}}_{f_{\theta},i},$$

where $s_{f_{\theta}}^{i}$ is the score for $i \leq p$ variable as estimated by f_{θ} .

Objective: Given a dataset of MILPs

- learn an inexpensive function f
- that imitates strong branching decisions (computationally expensive)

$$i_{SB}^{\star} = \mathop{\arg\max}_{i \in \mathcal{C}} \mathop{\mathrm{score}}_{SB,i} \qquad i_f^{\star} = \mathop{\arg\max}_{i \in \mathcal{C}} \mathop{\mathrm{score}}_{f_{\theta},i},$$

where $s_{f_{\theta}}^{i}$ is the score for $i \leq p$ variable as estimated by f_{θ} .

$$\theta^* = \operatorname*{arg\,min}_{\theta} \mathcal{L}(f_{\theta}(\textit{MILP}), i^{\star}_{\textit{SB}})$$

Objective: Given a dataset of MILPs

- learn an inexpensive function f
- that imitates strong branching decisions (computationally expensive)

$$i_{SB}^{\star} = \mathop{\arg\max}_{i \in \mathcal{C}} \mathop{\mathrm{score}}_{SB,i} \qquad i_f^{\star} = \mathop{\arg\max}_{i \in \mathcal{C}} \mathop{\mathrm{score}}_{f_{\theta},i},$$

where $s_{f_{\theta}}^{i}$ is the score for $i \leq p$ variable as estimated by f_{θ} .

$$heta^* = \operatorname*{arg\,min}_{ heta} \mathcal{L}(\mathit{f}_{ heta}(\mathit{MILP}), \mathit{i}^\star_{\mathit{SB}})$$

Well studied problem (not an exhaustive list)

- ightharpoonup Gasse et al., 2019 \implies offline imitation learning using GCNN
- ▶ Nair et al., 2020 ⇒ uses GCNNs to design other heuristics
- ► Chen et al., 2022 ⇒ studies the limitations of existing GNNs to represent MILPs

- + superior representation power
- + best overall accuracy

Gasse et al., 2019 uses Graph Neural Networks to imitate the strong branching policy through classification framework

- + superior representation power
- + best overall accuracy

Model inputs

Inputs to the GNN is a bipartite-representation of MILP: G

Natural representation : variable / constraint bipartite graph

```
\begin{array}{ll} \underset{\mathsf{x}}{\text{arg min}} & \mathsf{c}^{\top}\mathsf{x} \\ \\ \text{subject to} & \mathsf{A}\mathsf{x} \leq \mathsf{b}, \\ & \mathsf{I} \leq \mathsf{x} \leq \mathsf{u}, \\ & \mathsf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}. \end{array}
```

Natural representation : variable / constraint bipartite graph

$$\begin{array}{ll} \underset{\times}{\text{arg min}} & c^\top x & \\ \text{subject to} & Ax \leq b, & \\ & I \leq x \leq u, \\ & x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}. & \\ \end{array}$$

▶ v_i: variable features (type, coef., bounds, LP solution...)

Natural representation : variable / constraint bipartite graph

$$\begin{array}{lll} \underset{x}{\text{arg min}} & c^{\top}x & \underbrace{v_0} \\ \text{subject to} & \mathsf{Ax} \leq \mathsf{b}, & \underbrace{v_1} \\ & \mathsf{I} \leq \mathsf{x} \leq \mathsf{u}, & \underbrace{v_2} \\ & & \mathsf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}. & \underbrace{v_2} \end{array}$$

- ▶ v_i: variable features (type, coef., bounds, LP solution...)
- ightharpoonup g_j: constraint features (right-hand-side, LP slack...)

Natural representation : variable / constraint bipartite graph

$$\begin{array}{lll} \text{arg min} & c^\top x & & & & & & & & & & & \\ x & \text{subject to} & \text{Ax} \leq b, & & & & & & & & & \\ & & \text{I} \leq x \leq u, & & & & & & & & \\ & & & & x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}. & & & & & & & & \\ \end{array}$$

- ▶ v_i: variable features (type, coef., bounds, LP solution...)
- ightharpoonup g_j: constraint features (right-hand-side, LP slack...)
- ightharpoonup e_{i,j}: non-zero coefficients in A

- + superior representation power
- + best overall accuracy

- + superior representation power
- + best overall accuracy
- requires GPUs for best running times (Gupta, Gasse, et al., 2020)

- + superior representation power
- + best overall accuracy
- requires GPUs for best running times (Gupta, Gasse, et al., 2020)
 - ? Can we further improve the performance? (Gupta, Khalil, et al., 2022)

Hybrid Models for Learning to Branch (NeurIPS 2020)

Outline

Problem formulation

Hybrid Models for Learning to Branch (NeurIPS 2020)

Model Architecture Training Protocols

Lookback for Learning to Branch (TMLR 2022)

MILP Solvers

MILP solvers do not use GPUs.

Use of GNNs can get infeasible in the following scenarios

- ► No GPUs: It will be infeasible to incorporate GNNs as a branching policy in any of the available solvers
- Parallel MILP solving: As a single GPU can only fit a limited number of GNNs, when several 100s of MILPs need to be solved in parallel, GNNs can get infeasible

Runtime performance

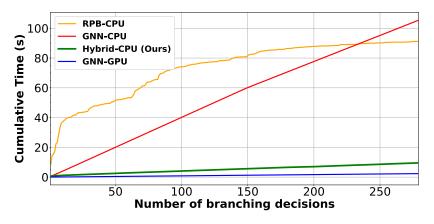


Figure: Cumulative time cost of different branching policies: (i) the default internal rule RPB of the SCIP solver; (ii) a GNN model (using a GPU or a CPU); and (iii) our hybrid model. Clearly the GNN model requires a GPU for being competitive, while our hybrid model does not. (Measured on a capacitated facility location problem, medium size).

Data Extraction

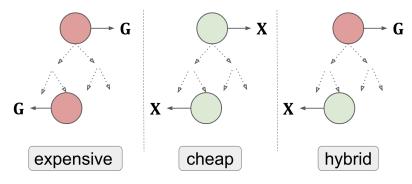
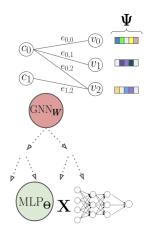


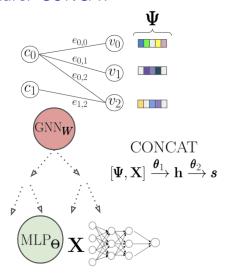
Figure: Data extraction strategies: bipartite graph representation G at every node (expensive); candidate variable features X at every node (cheap); bipartite graph at the root node and variable features at tree node (hybrid).

Outline

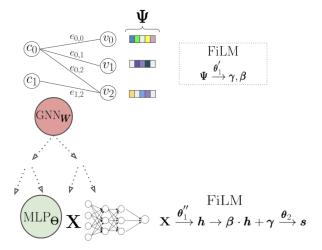
Problem formulation


Hybrid Models for Learning to Branch (NeurIPS 2020)

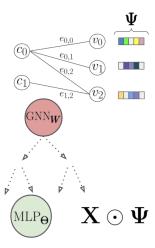
Model Architecture


Training Protocols

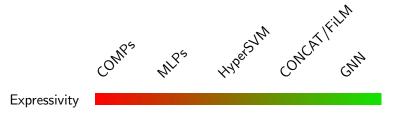
Lookback for Learning to Branch (TMLR 2022)


Model Architecture

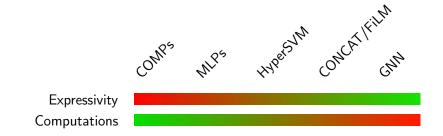
Model Architecture: CONCAT



Model Architecture: FiLM



Perez et al., 2018 first proposed FiLM for visual question answering task


Model Architecture: HyperSVM

Model Architecture

Model Architecture

Model Architecture: Performance

End-to-end training

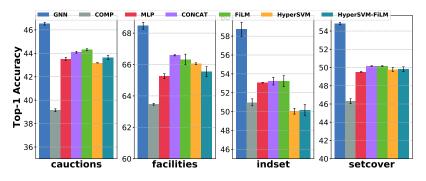


Figure: Test accuracy of the different models, with a simple e2e training protocol.

Outline

Problem formulation

Hybrid Models for Learning to Branch (NeurIPS 2020)

- Architecture

Training Protocols

Lookback for Learning to Branch (TMLR 2022)

Training Protocols

To enhance the generalization power of the learned models on the bigger instances

Training Protocols: Loss weights

A good decision closer to the root node is more important than the ones far away from it.

Table: Effect of different sample weighting schemes on combinatorial auctions (big) instances, with a simple MLP model. $z \in [0, 1]$ is the ratio of the depth of the node and the maximum depth observed in a tree.

Туре	Weighting scheme	Nodes	Wins
Constant	1	9678	10/60
Exponential decay	$e^{-0.5z}$	9793	10/60
Linear	$(e^{-0.5}-1)*z+1$	9789	12/60
Quadratic decay	$(e^{-0.5} - 1) * z^2 + 1$	9561	14/60
Sigmoidal	$(1 + e^{-0.5})/(1 + e^{z-0.5})$	9534	14/60

Training Protocols: Knowledge Distillation

Knowledge distillation (KD):² Use the output of an expert GNN from Gasse et al., 2019 as a target for the model.

KD reweights the samples so that the student doesn't attempt to sharply classify samples that even the teacher didn't succeed with (i.e. the logits have higher entropy for the more difficult samples) Phuong et al., 2019.

Table: Test accuracy of FiLM, using different training protocols.

	cauctions	facilities	indset	setcover
Pretrained GNN e2e e2e & KD	$\begin{array}{c} 44.12\pm0.09 \\ 44.31\pm0.08 \\ 44.10\pm0.09 \end{array}$	$\begin{array}{c} 65.78 \pm 0.06 \\ 66.33 \pm 0.33 \\ 66.60 \pm 0.21 \end{array}$	$\begin{array}{c} 53.16\pm0.51 \\ 53.23\pm0.58 \\ 53.08\pm0.3 \end{array}$	$\begin{array}{c} 50.00\pm0.09 \\ 50.16\pm0.05 \\ 50.31\pm0.19 \end{array}$

²G. Hinton et al. (2015). Distilling the knowledge in a neural network.

Training Protocols: Auxiliary Task

Auxiliary Task (AT): No additional data required. We force the variable representations to be far apart from each other.

- ► ED : Maximum distance between these representations in euclidean space
- ► MHE³ : Uniform distribution of these representations over a unit hypersphere

Table: Test accuracy of FiLM, using different training protocols.

	cauctions	facilities	indset	setcover
Pretrained GNN e2e e2e & KD e2e & KD & AT	$\begin{array}{c} 44.12 \pm 0.09 \\ 44.31 \pm 0.08 \\ 44.10 \pm 0.09 \\ \textbf{44.56} \pm \textbf{0.13} \end{array}$	$\begin{array}{c} 65.78 \pm 0.06 \\ 66.33 \pm 0.33 \\ 66.60 \pm 0.21 \\ \textbf{66.85} \pm \textbf{0.28} \end{array}$	$\begin{array}{c} 53.16 \pm 0.51 \\ 53.23 \pm 0.58 \\ 53.08 \pm 0.3 \\ \textbf{53.68} \pm \textbf{0.23} \end{array}$	$\begin{array}{c} 50.00\pm0.09\\ 50.16\pm0.05\\ 50.31\pm0.19\\ \textbf{50.37}\pm\textbf{0.03} \end{array}$

³W. Liu et al. (2018). Learning towards minimum hyperspherical energy.

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

Madal	Т:	Easy	Nadaa	T:	Medium	Na Jaa	T:	Hard	Nodes
iviodei	Time	vvins	ivodes	Time	vvins	Nodes	Time	vvins	Nodes
FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0 / 51	50
PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 / 57	294
GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 / 54	286
FiLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286
	PB RPB COMP GNN FiLM (ours)	FSB 42.5 PB 31.4 RPB 36.9 COMP 30.4 GNN 39.2 FiLM (ours) 24.7	Model Time Wins FSB 42.5 1 / 60 PB 31.4 4 / 60 RPB 36.9 1 / 60 COMP 30.4 3 / 60 GNN 39.2 0 / 60 FiLM (ours) 24.7 51 / 60	Model Time Wins Nodes FSB 42.5 1 / 60 13 PB 31.4 4 / 60 139 RPB 36.9 1 / 60 23 COMP 30.4 3 / 60 120 GNN 39.2 0 / 60 112 FiLM (ours) 24.7 51 / 60 109	Model Time Wins Nodes Time FSB 42.5 1 / 60 13 31.3 PB 31.4 4 / 60 139 177.7 RPB 36.9 1 / 60 23 214.0 COMP 30.4 3 / 60 120 172.5 GNN 39.2 0 / 60 112 209.8 FiLM (ours) 24.7 51 / 60 109 136.4	Model Time Wins Nodes Time Wins FSB 42.5 1 / 60 13 313.3 0 / 59 PB 31.4 4 / 60 139 177.7 4 / 60 RPB 36.9 1 / 60 23 214.0 1 / 60 COMP 30.4 3 / 60 120 172.5 4 / 60 GNN 39.2 0 / 60 112 209.8 0 / 60 FiLM (ours) 24.7 51 / 60 109 136.4 51 / 60	Model Time Wins Nodes Time Wins Nodes FSB 42.5 1 / 60 13 313.3 0 / 59 75 PB 31.4 4 / 60 139 177.7 4 / 60 384 RPB 36.9 1 / 60 23 214.0 1 / 60 152 COMP 30.4 3 / 60 120 172.5 4 / 60 347 GNN 39.2 0 / 60 112 209.8 0 / 60 314 FiLM (ours) 24.7 51 / 60 109 136.4 51 / 60 325	Model Time Wins Nodes Time Wins Nodes Time Wins Nodes Time FSB 42.5 1 / 60 13 313.3 0 / 59 75 997.2 PB 31.4 4 / 60 139 177.7 4 / 60 384 712.6 RPB 36.9 1 / 60 23 214.0 1 / 60 152 794.8 COMP 30.4 3 / 60 120 172.5 4 / 60 347 633.4 GNN 39.2 0 / 60 112 209.8 0 / 60 314 748.8 FiLM (ours) 24.7 51 / 60 109 136.4 51 / 60 325 531.7	Model Time Wins Nodes Time Wins Nodes Time Wins FSB 42.5 1 / 60 13 313.3 0 / 59 75 997.2 0 / 51 PB 31.4 4 / 60 139 177.7 4 / 60 384 712.6 3 / 56 RPB 36.9 1 / 60 23 214.0 1 / 60 152 794.8 2 / 54 COMP 30.4 3 / 60 120 172.5 4 / 60 347 633.4 6 / 57 GNN 39.2 0 / 60 112 209.8 0 / 60 314 748.8 0 / 54 FiLM (ours) 24.7 51 / 60 109 136.4 51 / 60 325 531.7 46 / 57

⁴A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical Report. Optimization Online

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

		Easy			Mediu	m			Hard	
Model	Time	Wins	Nodes	Time	Wins	5	Nodes	Time	Wins	Nodes
FSB	42.5	1 / 60	13	313.3	0 /	59	75	997.2	0 / 51	50
PB	31.4	4 / 60	139	177.7	4 /	60	384	712.6	3 / 56	309
RPB	36.9	1 / 60	23	214.0	1/	60	152	794.8	2 / 54	99
COMP	30.4	3 / 60	120	172.5	4 /	60	347	633.4	6 / 57	294
GNN	39.2	0 / 60	112	209.8	0 /	60	314	748.8	0 / 54	286
FiLM (ours)	24.7	51 / 60	109	136.4	51 /	60	325	531.7	46 / 57	295
GNN	28.9	- / 60	112	150.1	- /	60	314	628.1	- / 56	286
				Capacit	ated Fac	cilit	y Locati	on		

⁴A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical Report. Optimization Online

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

Model	Time	Easy Wins	Nodes	Time	Medium Wins	Nodes	Time	Hard Wins	Nodes
FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0 / 51	50
PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 / 57	294
GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 / 54	286
FiLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286
				· · ·	. I.E. 95	1			

⁴A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical Report. Optimization Online

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

		Easy			Medium			Hard	
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0 / 51	50
PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 / 57	294
GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 / 54	286
FiLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

⁴A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical Report. Optimization Online

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

Nodes
50
309
99
294
286
295
286

⁴A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical Report. Optimization Online

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

			Easy			Medium			Hard	
	Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
	FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0 / 51	50
	PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
	RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
_	COMP	_30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 / 57	294
L	GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 / 54	286
Ī	FiLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
	GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

⁴A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical Report. Optimization Online

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

		Easy			Medium			Hard	
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0 / 51	50
PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 / 57	294
GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 / 54	286
FiLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

⁴A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical Report. Optimization Online

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

			Easy			Medium			Hard	
	Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
	FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0 / 51	50
	PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
	RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
	COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 / 57	294
	GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 / 54	286
	FiLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
Ī	GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

⁴A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical Report. Optimization Online

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

	Easy			Medium			Hard	
Time	Vins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
42.5	/ 60	13	313.3	0 / 59	75	997.2	0 / 51	50
31.4	/ 60	139	177.7	4 / 60	384	712.6	3 / 56	309
36.9	/ 60	23	214.0	1 / 60	152	794.8	2 / 54	99
30.4	/ 60	120	172.5	4 / 60	347	633.4	6 / 57	294
39.2	/ 60	112	209.8	0 / 60	314	748.8	0 / 54	286
) 24.7 51	/ 60	109	136.4	51 / 60	325	531.7	46 / 57	295
28.9 –	/ 60	112	150.1	- / 60	314	628.1	- / 56	286
	42.5 1 31.4 4 36.9 1 30.4 3 39.2 () 24.7 5 1	Time Wins 42.5 / 60 31.4 / 60 36.9 / 60 30.4 / 60 39.2 / 60) 24.7 51 / 60	Time Wins Nodes 42.5 / 60 13 31.4 / 60 23 36.9 1 / 60 23 30.4 3 / 60 120 39.2 (/ 60 112) 24.7 51 / 60 109	Time Wins Nodes Time 42.5 1 / 60 13 313.3 31.4 4 / 60 139 177.7 36.9 1 / 60 23 214.0 30.4 3 / 60 120 172.5 39.2 4 / 60 112 209.8 24.7 5 / 60 109 136.4	Time Vins Nodes Time Wins 42.5 1 / 60 13 313.3 0 / 59 31.4 4 / 60 139 177.7 4 / 60 36.9 1 / 60 23 214.0 1 / 60 30.4 3 / 60 120 172.5 4 / 60 39.2 0 / 60 112 209.8 0 / 60 24.7 51 / 60 109 136.4 51 / 60	Time Wins Nodes Time Wins Nodes 42.5 1 / 60 13 313.3 0 / 59 75 31.4 4 / 60 139 177.7 4 / 60 384 36.9 1 / 60 23 214.0 1 / 60 152 30.4 3 / 60 120 172.5 4 / 60 347 39.2 0 / 60 112 209.8 0 / 60 314) 24.7 5 / 60 109 136.4 51 / 60 325	Time Vins Nodes Time Wins Nodes Time 42.5 1 / 60 13 313.3 0 / 59 75 997.2 31.4 4 / 60 139 177.7 4 / 60 384 712.6 36.9 1 / 60 23 214.0 1 / 60 152 794.8 30.4 3 / 60 120 172.5 4 / 60 347 633.4 39.2 0 / 60 112 209.8 0 / 60 314 748.8) 24.7 51 / 60 109 136.4 51 / 60 325 531.7	Time Vins Nodes Time Wins Nodes Time Wins 42.5 1 / 60 13 313.3 0 / 59 75 997.2 0 / 51 31.4 4 / 60 139 177.7 4 / 60 384 712.6 3 / 56 36.9 1 / 60 23 214.0 1 / 60 152 794.8 2 / 54 30.4 3 / 60 120 172.5 4 / 60 347 633.4 6 / 57 39.2 0 / 60 112 209.8 0 / 60 314 748.8 0 / 54) 24.7 5 / 60 109 136.4 51 / 60 325 531.7 46 / 57

⁴A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical Report. Optimization Online

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

		Easy			Medium			Hard	
Model	Time	Wins	Vodes	Time	Wins	Nodes	Time	Wins	Nodes
FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0 / 51	50
PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 / 57	294
GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 / 54	286
FiLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

⁴A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical Report. Optimization Online

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

313.3	0 / 59	75	997.2	0 / 51	
177.7				0 / 31	50
177.7	4 / 60	384	712.6	3 / 56	309
214.0	1 / 60	152	794.8	2 / 54	99
172.5	4 / 60	347	633.4	6 / 57	294
209.8	0 / 60	314	748.8	0 / 54	286
136.4	51 / 60	325	531.7	46 / 57	295
150.1	- / 60	314	628.1	- / 56	286
	214.0 172.5 209.8 136.4 150.1	2 14.0 1 / 60 172.5 4 / 60 209.8 0 / 60 136.4 51 / 60 150.1 - / 60	214.0 1 / 60 152 172.5 4 / 60 347 209.8 0 / 60 314 136.4 51 / 60 325 150.1 - / 60 314	214.0 1 / 60 152 794.8 172.5 4 / 60 347 633.4 209.8 0 / 60 314 748.8 136.4 51 / 60 325 531.7 150.1 - / 60 314 628.1	214.0 1 / 60 152 794.8 2 / 54 172.5 4 / 60 347 633.4 6 / 57 209.8 0 / 60 314 748.8 0 / 54 136.4 51 / 60 325 531.7 46 / 57

⁴A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical Report. Optimization Online

Finally, the learned models are used as a branching policy in SCIP solver⁵.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

			Easy			Medium			Hard	
	Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
	FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0 / 51	50
	PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
	RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
	COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 / 57	294
	GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 / 54	286
Fi	LM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
_	GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

⁵A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical Report. Optimization Online

		Small			Medium			Big	
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
FSB	42.53	1 / 60	13	313.33	0 / 59	75	997.23	0 / 51	50
PB	31.35	4 / 60	139	177.69	4 / 60	384	712.45	3 / 56	309
RPB	36.86	1 / 60	23	213.99	1 / 60	152	794.80	2 / 54	99
COMP	30.37	3 / 60	120	172.51	4 / 60	347	633.42	6 / 57	294
GNN	39.18	0 / 60	112	209.84	0 / 60	314	748.85	0 / 54	286
F1LM (ours)	24.67	51 / 60	109	136.42	51 / 60	325	531.70	46 / 57	295
GNN-GPU	28.91	- / 60	112	150.11	- / 60	314	628.12	- / 56	286
				Capac	itated Facility	Location			
FSB	27.16	0 / 60	17	582.18	0 / 45	116	2700.00	0 / 0	n/a
PB	10.19	0 / 60	286	94.12	0 / 60	2451	2208.57	0 / 23	82 624
RPB	14.05	0 / 60	54	94.65	0 / 60	1129	1887.70	7 / 27	48 395
COMP	9.83	3 / 60	178	89.24	0 / 60	1474	2166.44	0 / 21	52 326
GNN	17.61	0 / 60	136	242.15	0 / 60	1013	2700.17	0 / 0	n/a
FILM (ours)	8.73	57 / 60	147	63.75	60 / 60	1131	1843.24	20 / 26	37 777
GNN-GPU	8.26	- / 60	136	53.56	- / 60	1013	1535.80	- / 36	31 662
					Set Covering	3			
FSB	6.12	0 / 60	6	132.38	0 / 60	71	2127.35	0 / 28	318
PB	2.76	1 / 60	234	25.83	0 / 60	2765	393.60	0 / 59	13719
RPB	4.01	0 / 60	11	26.36	0 / 60	714	210.95	29 / 60	4701
COMP	2.76	0 / 60	82	29.76	0 / 60	930	494.59	0 / 54	5613
GNN	2.73	1 / 60	71	22.26	0 / 60	688	257.99	6 / 60	3755
FILM (ours)	2.13	58 / 60	73	15.71	60 / 60	686	217.02	25 / 60	4315
GNN-GPU	1.96	- / 60	71	11.70	- / 60	688	121.18	- / 60	3755
				Con	nbinatorial Au	ctions			
FSB	673.43	0 / 53	47	1689.75	0 / 20	10	2700.00	0 / 0	n/a
PB	172.03	2 / 57	5728	753.95	0 / 45	1570	2685.23	0 / 1	38 215
RPB	59.87	5 / 60	603	173.17	11 / 60	205	1946.51	9 / 21	2461
COMP	82.22	1 / 58	847	383.97	1 / 52	267	2393.75	0 / 6	5589
GNN*	44.07	15 / 60	331	625.23	1 / 50	599	2330.95	0 / 10	687
FiLM* (ours)	52.96	37 / 55	376	131.45	47 / 54	264	1823.29	12 / 15	1201
GNN-GPU*	31.71	- / 60	331	63.96	- / 60	599	1158.59	- / 27	685
				Maxi	mum Indepen	dent Set			

B&B Performance (Optimality Gap)

Hybrid models also have the least optimality gap at the end of the time limit as compared to other baselines as evaluated on CPU only machines.

Table: Mean optimality gap (lower the better) of commonly unsolved "big" instances (number of such instances in brackets).

	setcover (33)	indset (39)
FSB	0.1709	0.0755
PB RPB COMP GNN FiLM	0.0713 0.0628 0.0740 0.1039 0.0597	0.0298 0.0252 0.0252 0.0341 0.0187

Runtime performance

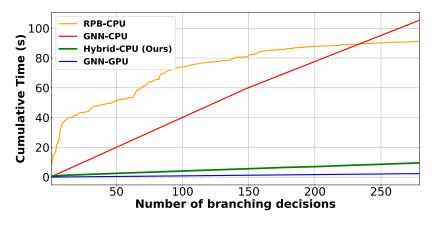


Figure: Cumulative time cost of different branching policies: (i) the default internal rule RPB of the SCIP solver; (ii) a GNN model (using a GPU or a CPU); and (iii) our hybrid model. Clearly the GNN model requires a GPU for being competitive, while our hybrid model does not. (Measured on a capacitated facility location problem, medium size).

Open questions

- scaling to the real-world problems
- reinforcement learning: still a lot of challenges
- ▶ interpretation: which variables are chosen? Why ?
- ▶ learning in collaboration with other heuristics, e.g, cut selection, node selection, etc.
- meta-learning to transfer to unseen instances

Paper: https: //arxiv.org/abs/2006.15212

Code: https://github.com/ pg2455/Hybrid-learn2branch

Peer-reviews: http://bit.ly/3XU9E8W

Lookback for Learning to Branch (TMLR 2022)

Outline

Problem formulation

Hybrid Models for Learning to Branch (NeurlPS 2020)

Lookback for Learning to Branch (TMLR 2022)

Lookback condition

Loss target

Regularizer

Evaluation

Conclusion

Outline

Problem formulation

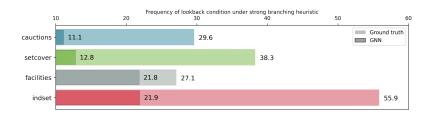
Hybrid Models for Learning to Branch (NeurlPS 2020)

Lookback for Learning to Branch (TMLR 2022)

Lookback condition

Loss target

Regularizer


Evaluation

Conclusion

Lookback condition in strong branching

Strong branching heuristic exhibits the following condition: Parent's second best choice is *often* the child's best choice.

Frequency of Lookback condition

Frequency of Lookback condition

Instances	Description	number of parent-child pairs collected	number of parent-child pairs exhibiting the lookback property	Frequency of the lookback property
CORLAT	Corridor planning in wildlife management	5082	1765	34.73%
RCW	Red-cockaded woodpecker diffusion conservation	5115	1952	38.16%

Frequency of the lookback property in the real-world instances is as prevalent as in the synthetic instances considered in the main paper. These instances are made available by Dilkina et al., 2017.

Outline

Problem formulation

Hybrid Models for Learning to Branch (NeurlPS 2020)

Lookback for Learning to Branch (TMLR 2022)

Lookback condition

Loss target

Regularizer

Evaluation

Conclusion

We consider two types of targets ($\mathcal Z$ is the set of all the second best branching variables)

Original one-hot encoded target,

$$y_i = \begin{cases} 1, & i = i_{SB}^* \\ 0, & \text{otherwise} \end{cases}$$

We consider two types of targets $(\mathcal{Z} \text{ is the set of all the second best branching variables})$

Original one-hot encoded target,
y

$$y_i = \begin{cases} 1, & i = i_{SB}^* \\ 0, & \text{otherwise} \end{cases}$$

$$\theta_y^* = \underset{\theta}{\operatorname{arg\,min}} \frac{1}{N} \sum_{k=1}^{N} CE(f_{\theta}(\mathcal{G}_k), y_k)$$

We consider two types of targets ($\mathcal Z$ is the set of all the second best branching variables)

Second-best ϵ -smoothed target,

$$\mathbf{y}_i = egin{cases} 1, & i = i^*_{SB} \ 0, & ext{otherwise} \end{cases}$$

$$\mathbf{z}_i = egin{cases} 1 - \epsilon, & i = i^*_{SB} \ rac{\epsilon}{|\mathcal{Z}|}, & i \in \mathcal{Z} \ 0, & ext{otherwise} \end{cases}$$

$$\theta_y^{\star} = \underset{\theta}{\operatorname{arg\,min}} \frac{1}{N} \sum_{k=1}^{N} CE(f_{\theta}(\mathcal{G}_k), y_k)$$

We consider two types of targets (\mathcal{Z} is the set of all the second best branching variables)

Original one-hot encoded target, Second-best
$$\epsilon$$
-smoothed target, z

$$\mathbf{y}_i = \begin{cases} 1, & i = i^*_{SB} \\ 0, & \text{otherwise} \end{cases} \qquad \mathbf{z}_i = \begin{cases} 1 - \epsilon, & i = i^*_{SB} \\ \frac{\epsilon}{|\mathcal{Z}|}, & i \in \mathcal{Z} \\ 0, & \text{otherwise} \end{cases}$$

$$\theta_y^{\star} = \arg\min_{\theta} \frac{1}{N} \sum_{k=1}^{N} CE(f_{\theta}(\mathcal{G}_k), y_k) \qquad \theta_z^{\star} = \arg\min_{\theta} \frac{1}{N} \sum_{k=1}^{N} CE(f_{\theta}(\mathcal{G}_k), z_k)$$

Outline

Problem formulation

Hybrid Models for Learning to Branch (NeurIPS 2020)

Lookback for Learning to Branch (TMLR 2022)

Lookback condition

Loss target

Regularizer

Evaluation

Conclusion

We consider a regularizer to encourage the lookback proprety in GNNs

We consider a regularizer to encourage the lookback proprety in $\ensuremath{\mathsf{GNNs}}$

$$\mathsf{loss}_{\mathit{PAT}} = 1\{\mathit{Lookback}_i\} \cdot$$

We consider a regularizer to encourage the lookback proprety in $\ensuremath{\mathsf{GNNs}}$

$$loss_{PAT} = 1\{Lookback_i\} \cdot CE(f_{\theta}(G_i), ??),$$

We consider a regularizer to encourage the lookback proprety in GNNs

$$\mathsf{loss}_{\textit{PAT}} = 1\{\textit{Lookback}_i\} \cdot \textit{CE}(\textit{f}_{\theta}(\mathcal{G}_i), \textit{f}_{\theta}(\mathcal{G}_i^{\textit{parent}})[\mathcal{C}_i]),$$

Outline

Problem formulation

Hybrid Models for Learning to Branch (NeurlPS 2020)

Lookback for Learning to Branch (TMLR 2022)

Lookback condition

Loss target

Regularizer

Evaluation

Conclusion

We will consider three different set of parameters

- Choice of the target:
 - One-hot encoded, y
 - Second-best ϵ -smoothed, z
- ► Strength of the PAT regularizer, $\lambda_{PAT} \in \{0, 0.01, 0.1, 0.2, 0.3\}$
- ► Strength of the /2-regularizer, $\lambda_{l2} \in \{0.0, 0.01, 0.1, 1.0\}$

$$\theta_y = \operatorname*{arg\,min}_{\theta,\lambda_{I2}} \frac{1}{N} \sum_{k=1}^{N} CE(f_{\theta}(\mathcal{G}_k), \mathsf{y}_k) + \lambda_{I2} \cdot ||\theta||_2$$

$$\theta_y = \operatorname*{arg\,min}_{\theta,\lambda_{I2}} \frac{1}{N} \sum_{k=1}^{N} CE(f_{\theta}(\mathcal{G}_k), \mathsf{y}_k) + \lambda_{I2} \cdot ||\theta||_2$$

$$heta_z = \operatorname*{arg\,min}_{ heta,\lambda_{I2}} rac{1}{N} \sum_{k=1}^{N} CE(f_{ heta}(\mathcal{G}_k),\mathsf{z}_k) + \lambda_{I2} \cdot || heta||_2$$

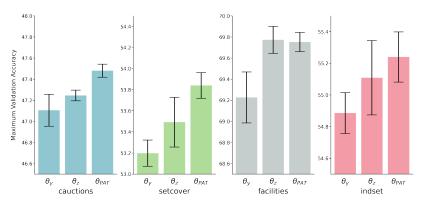
$$\theta_y = \operatorname*{arg\,min}_{\theta,\lambda_{I2}} \frac{1}{N} \sum_{k=1}^{N} CE(f_{\theta}(\mathcal{G}_k), \mathsf{y}_k) + \lambda_{I2} \cdot ||\theta||_2$$

$$\theta_z = \operatorname*{arg\,min}_{\theta,\lambda_{I2}} \frac{1}{N} \sum_{k=1}^{N} CE(f_{\theta}(\mathcal{G}_k), \mathsf{z}_k) + \lambda_{I2} \cdot ||\theta||_2$$

$$\theta_{PAT} = \underset{\theta, \mathbf{v}, \lambda_{I2}, \lambda_{PAT}}{\operatorname{arg \, min}} \frac{1}{N} \sum_{k=1}^{N} CE(f_{\theta}(\mathcal{G}_{k}), \mathbf{v}) + \lambda_{I2} \cdot ||\theta||_{2} + \lambda_{PAT} \cdot \mathsf{loss}_{PAT}$$

Performance evaluation: Instances

➤ Small instances are used to <u>collect training data</u> of parent-child nodes by solving these instances using the strong branching heuristic as the variable selection policy in the solver

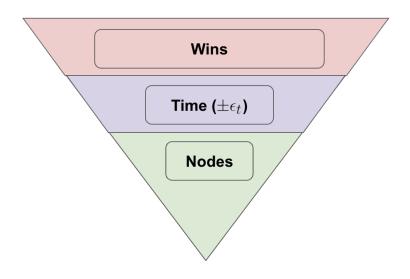

Performance evaluation: Instances

- ➤ Small instances are used to <u>collect training data</u> of parent-child nodes by solving these instances using the strong branching heuristic as the variable selection policy in the solver
- ▶ Medium instances are used for <u>hyperparameter selection</u> incorporating harder-to-formulate criterion in the objective function

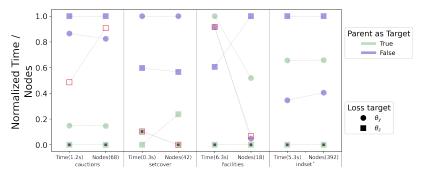
Performance evaluation: Instances

- ➤ Small instances are used to <u>collect training data</u> of parent-child nodes by solving these instances using the strong branching heuristic as the variable selection policy in the solver
- Medium instances are used for <u>hyperparameter selection</u> incorporating harder-to-formulate criterion in the objective function
- ▶ Big instances are used to report performance evaluation

Model selection criterion: Validation accuracy


Top-1 accuracy (1-standard deviation) on validation dataset.

Model selection criterion: Out-of-distribution performance


We solve 100 medium instances and collect the following metrics

- Wins: Number of times a model solved the instance fastest
- ➤ Time: 1-shifted geometric mean of time taken to solve each instance
- ► Nodes: 1-shifted geometric mean of nodes taken in the B&B tree of the *commonly solved instances*

Model selection criterion: Out-of-distribution performance

Model selection criterion: Out-of-distribution performance

We plot the range-normalized (range is specified in parenthesis) Time and Node performance of the selected models. The centered "X" black mark shows the final models that were selected to be used for evaluating the performance on Big instances. The points with a red outline show the performance of the models selected according to the best validation accuracy (Note that we omit such models for indset as it distorts the scale of the plot.)

Model	Time	Time (c)	Wins	Solved	Nodes (c)
FSB*	n/a	n/a	n/a	n/a	n/a
RPB	626.81	434.92	1	80	17 979
$ ext{tuned} ext{RPB}$	644.20	450.06	0	80	18104
GNN	507.06	333.59	14	80	17145
GNN-PAT (ours)	477.26	310.22	69	84	16 388

Combinatorial Auction (Bigger)

Model	Time	Time (c)	Wins	Solved	Nodes (c)
FSB*	n/a	n/a	n/a	n/a	$_{ m n/a}$
RPB	626.81	434.92	1	80	17 979
$ ext{tuned} ext{RPB}$	644.20	450.06	0	80	18104
GNN	507.06	333.59	14	80	17145
gnn-PAT (ours)	477.26	310.22	69	84	16388

Combinatorial Auction (Bigger)

Model	Time	Time (c)	Wins	Solved	Nodes (c)
FSB*	n/a	n/a	n/a	n/a	n/a
RPB	626.81	434.92	1	80	17979
TUNEDRPB	644.20	450.06	0	80	18104
GNN	507.06	333.59	14	80	17145
GNN-PAT (ours)	477.26	310.22	69	84	16 388

Combinatorial Auction (Bigger)

Model	$_{ m Time}$	Time (c)	Wins	Solved	Nodes (c)
FSB*	n/a	n/a	n/a	n/a	n/a
RPB	626.81	434.92	1	80	17 979
TUNEDRPB	644.20	450.06	0	80	18104
GNN	507.06	333.59	14	80	17145
GNN-PAT (ours)	477.26	310.22	69	84	16388

Combinatorial Auction (Bigger)

Model	Time	Time (c)	Wins	Solved	Nodes (c)
FSB*	n/a	n/a	n/a	n/a	n/a
RPB	626.81	434.92	1	80	17 979
TUNEDRPB	644.20	450.06	0	80	18104
GNN	507.06	333.59	14	80	17145
GNN-PAT (ours)	477.26	310.22	69	84	16 388

Combinatorial Auction (Bigger)

Model	Time	Time (c)	Wins	Solved	Nodes (c)
FSB*	n/a	n/a	n/a	n/a	n/a
RPB	626.81	434.92	1	80	17 979
$ ext{tunedRPB}$	644.20	450.06	0	80	18104
GNN	507.06	333.59	14	80	17145
GNN-PAT (ours)	477.26	310.22	69	84	16 388

Combinatorial Auction (Bigger)

Optimality gap on commonly unsolved instances

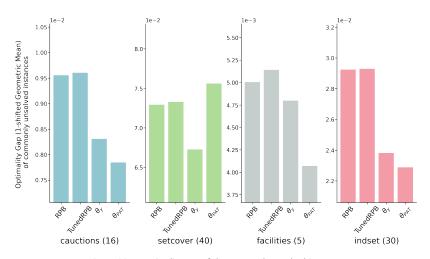


Figure: Mean optimality gap of the commonly unsolved instances

Outline

Problem formulation

Hybrid Models for Learning to Branch (NeurIPS 2020)

Lookback for Learning to Branch (TMLR 2022)

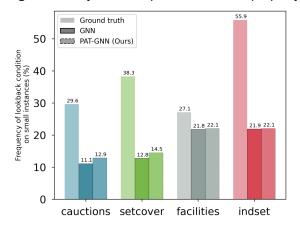
Lookback condition

Loss target

Regularizer

Evaluation

► We **discover** *lookback* phenomenon in the gold-standard (by tree size) variable-selection heuristic


- ► We discover *lookback* phenomenon in the gold-standard (by tree size) variable-selection heuristic
- ightharpoonup We proposed second-best ϵ -smoothed target and a PAT regularizer term to incorporate lookback phenomenon in deep learning models

- ► We discover *lookback* phenomenon in the gold-standard (by tree size) variable-selection heuristic
- ightharpoonup We **proposed** second-best ϵ -smoothed target and a PAT regularizer term to incorporate lookback phenomenon in deep learning models
- We proposed a model selection scheme to incorporate final utility of these models in the objective function

- ► We discover *lookback* phenomenon in the gold-standard (by tree size) variable-selection heuristic
- ightharpoonup We **proposed** second-best ϵ -smoothed target and a PAT regularizer term to incorporate lookback phenomenon in deep learning models
- We proposed a model selection scheme to incorporate final utility of these models in the objective function
- Our proposed models outperform the SOTA results

► Discovery of more inductive biases

- Discovery of more inductive biases
- ▶ Designing better ways to incorporate lookback property

- Discovery of more inductive biases
- Designing better ways to incorporate lookback property
- Improve reinforcement learning solutions using the lookback property

- Discovery of more inductive biases
- Designing better ways to incorporate lookback property
- Improve reinforcement learning solutions using the lookback property

Paper: https://arxiv.org/abs/2006.15212

Peer-reviews: https://openreview.net/forum?id=EQpGkw5rvL

Learning to Branch

Thank you!

Prateek Gupta*, Elias B. Khalil, Didier Chételat, Maxime Gasse, M. Pawan Kumar, Andrea Lodi, Yoshua Bengio

Slides

Slides: www.pgupta.info/talks